RDF4PMC, RDFizing PubMed Central

Alexander Garcia1, Leyla Jael García Castro2, Casey McLaughlin1
1Florida State University
2Universitat Jaume I
Outline

• The Biotea project
• Why Semantic Web Technologies?
• RDF4PMC in a nutshell
• Architecture
• RDFization process
 • PMC RDFization
 • Content enrichment
 • Some numbers for RDF4PMC
 • Architecture
• Using the data
 • SPARQL
 • Bio2RDF integration
 • Web services
 • A first prototype
• Challenges and Lessons
• Currently working on...
• Future Work
• Conclusions
• Acknowledgments
Biotea

Scholarly data and documents are of most value when they are interconnected rather than independent

Christine L. Borgman

- Methodologies, methods and techniques supporting semantic enrichment of scholarly communication
- Once enriched, then how is this changing our user experience?
Biotea

Scholarly data and documents are of most value when they are interconnected rather than independent

Christine L. Borgman

• How are publications connected to each other?
• Putting together explicit assertions from different papers to form new implicit assertions
• Semantic Web Technology supporting scholarly communication, Literature Based Discovery and the Search-Retrieval-and-Interacting-with-the-Document (SRID) processes
Why SWT for research documents

• Generates an adaptable open approach, the data becomes the platform
• The SW delivers an integrative platform
• Makes it easier for the community to build over the platform
• Simplifies programmatic access to information
 • Retrieve all papers that have a component X (CHEBI) and the cellular location in GO terms
 • As simple as relating terminologies
• Delivers Social Network ready content
RDF4PMC in a nutshell

- Delivers an interoperable, interlinked, and self-describing document model in the biomedical domain.
- A network of interconnected documents
- Semantic infrastructure for PMC
- An interface to the Web of Data
- A knowledge model for biomedical literature – easily extendible
RDF4PMC in a nutshell

• RDFizing biomedical literature by orchestrating ontologies such as
 - DoCO, BIBO, DC, FOAF, W3CPROV, and others
• Datasets are available
 - RDF for metadata and content
 - RDF for annotations from text-mining
• RDFizator will be available
 - Adding other ontologies and annotators is possible
 - Working with XML from other sources is possible
PMC RDFization

Metadata+ Content + References

References Enrichment

RDF Generation

RDF Reactor

PMC NXML
Annotations: Content Enrichment

Enriched RDF

RDF Generation

Automatic Annotation

Metadata + Content + References

Web service

Web service
RDF4PMC, some numbers

Articles per journal

Coverage of biological entities.
RDF4PMC Server Architecture

Master Server

RDF DB Master

Replicate

RDF DB Slave

Web & SPARQL Server (development)

Replicate

RDF DB Slave

Web & SPARQL Server (production)

Import scripts + RDF files

PMCRDFization
Consuming the data: SPARQL

<table>
<thead>
<tr>
<th>SPARQL query</th>
<th>Query expressed in natural language</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>WHERE {</code></td>
<td></td>
</tr>
<tr>
<td><code> ?article a bibo:Document ;</code></td>
<td></td>
</tr>
<tr>
<td><code>bibo:pmid ?pmid ;</code></td>
<td></td>
</tr>
<tr>
<td><code>?section a doco:Section ;</code></td>
<td></td>
</tr>
<tr>
<td><code>dcterms:isPartOf ?article ;</code></td>
<td></td>
</tr>
<tr>
<td><code>dcterms:title ?secTitle .</code></td>
<td></td>
</tr>
<tr>
<td><code>FILTER (regex(str(?secTitle), "introduction", "i")) .</code></td>
<td></td>
</tr>
<tr>
<td><code>?para a doco:Paragraph ;</code></td>
<td></td>
</tr>
<tr>
<td><code>dcterms:isPartOf ?section ;</code></td>
<td></td>
</tr>
<tr>
<td><code>cnt:chars ?text .</code></td>
<td></td>
</tr>
<tr>
<td><code>FILTER (regex(str(?text), "cancer", "i")) .</code></td>
<td></td>
</tr>
<tr>
<td><code>} LIMIT 50</code></td>
<td></td>
</tr>
</tbody>
</table>
Consuming the data: SPARQL

<table>
<thead>
<tr>
<th>SPARQL query</th>
<th>Query expressed in natural language</th>
</tr>
</thead>
</table>
| SELECT distinct ?pmid
WHERE {
?article a bibo:AcademicArticle ;
bibo:pmid ?pmid .
?annotation a aot:ExactQualifier ;
ao:annotatesResource ?article ;
ao:hasTopic <http://purl.obolibrary.org/obo/CHEBI_60004> .} | Retrieving PubMed identifier for those articles that have been semantically annotated with the biological entity CHEBI:60004. The semantic annotation comes from the occurrence of the term “mixture” in any paragraph of the retrieved articles. |

CHEBI:60004

A mixture is a chemical substance composed of multiple molecules, at least two of which are of a different kind
Bio2RDF Integration

Metadata & References

BIBO

- pmc_vocabulary:Document
- pmc_vocabulary:Article
- pmc_vocabulary:AcademicArticle
- pmc_vocabulary:Proceedings
- pmc_vocabulary:Book
- pmc_vocabulary:CollectedDocument
- pmc_vocabulary:EditedBook
- pmc_vocabulary:Issue
- pmc_vocabulary:DocumentPart
- pmc_vocabulary:BookSection
- pmc_vocabulary:Chapter
- pmc_vocabulary:Thesis
- pmc_vocabulary:WebPage
- pmc_vocabulary:Journal
- pmc_vocabulary:authorList
- pmc_vocabulary:citedBy
- pmc_vocabulary:cites
- pmc_vocabulary:editorList

Content

DoCO

- pmc_vocabulary:Paragraph
- pmc_vocabulary:Section
- pmc_vocabulary:Figure
- pmc_vocabulary:Table

W3C CNT

- pmc_vocabulary:Content
- pmc_vocabulary:ContentAsText

Annotations

RDF

- pmc_vocabulary:Annotation
- pmc_vocabulary:ExactQualifier
- pmc_vocabulary:Selector
- pmc_vocabulary:ElementSelector
- pmc_vocabulary:StartEndElementSelector
- pmc_vocabulary:annotatesResource
- pmc_vocabulary:context
- pmc_vocabulary:createdBy
- pmc_vocabulary:hasTopic
- pmc_vocabulary:onResource

W3C PROV

- pmc_vocabulary:wasAttributedTo
- pmc_vocabulary:wasDerivedFrom

- object
- organization
- person
- user account
- has attribute
- has attribute

- has creator
- has attribute

- annotation
- symbol
- text span
- computational entity
- computational entity
- is annotation of
- refers to
- has creator
- refers to
- is about
Consuming the data: Web services

<table>
<thead>
<tr>
<th>Retrieval</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>A list of terms and their related topics</td>
<td>http://biotea.idiginfo.org/api/terms</td>
</tr>
<tr>
<td>A list of topics and their related vocabularies</td>
<td>http://biotea.idiginfo.org/api/topics</td>
</tr>
<tr>
<td>All topics related to a term</td>
<td>e.g., http://biotea.idiginfo.org/api/topics?term=cancer</td>
</tr>
<tr>
<td>All vocabularies related to a term</td>
<td>e.g., http://biotea.idiginfo.org/api/vocabularies?term=cancer</td>
</tr>
<tr>
<td>All terms that start with a specific string (for autocompletion)</td>
<td>e.g., http://biotea.idiginfo.org/api/terms?prefix=canc</td>
</tr>
<tr>
<td>All topics related to a vocabulary</td>
<td>e.g., http://biotea.idiginfo.org/api/topics?vocabulary=po</td>
</tr>
<tr>
<td>RDF of articles that include a term</td>
<td>e.g., http://biotea.idiginfo.org/api/articles?term=cancer</td>
</tr>
<tr>
<td>Count of RDF of articles that include a term</td>
<td>e.g., http://biotea.idiginfo.org/api/articles?term=cancer&count=true</td>
</tr>
<tr>
<td>A list of vocabularies and their prefixes</td>
<td>http://biotea.idiginfo.org/vocabularies</td>
</tr>
<tr>
<td>RDF of articles that include a vocabulary</td>
<td>e.g., http://biotea.idiginfo.org/api/articles?vocabulary=po</td>
</tr>
</tbody>
</table>
Consuming the data: a dashboard for semantic bio-publications

Semantically enriched publication

Metadata + Content + References

biomedical annotation

SPARQL

Automatically Annotated RDF

Catalase
Consuming the data: first prototype

a) Retrieval: Metadata + Cloud of annotations

Cloud of Bio-annotations (term + # of bio-entities)

Title & authors

Links

Abstract

b) Enriched content → facts-based reading

Graphical tools

Paragraphs containing the annotation selected by the user

Interactive zone
Consuming the data: A first prototype
Challenges and Lessons

• Content
 • Tables and images → Links
 • Inline tables → Format is lost
 • Supplementary material
 • Most of them follow one DTD but ...

• References
 • At least 4 different styles
 • Some times are just plain text

• Annotators
 • Not always available
 • Stop words are tricky
Challenges and Lessons

- Where are the facts? How to validate the facts?

- Delivering the expressivity of the data set to the end user is a complex issue

- Annotation is context dependent

- Maintaining the triplet store has a learning curve of its own
 - Building SW infrastructure is H A R D
Currently working on:
Literature Discovery Process

• Search
 • Usually string-based search mechanisms
 • Little cognitive support

• Retrieval
 • Simple list of DB entries
 • Little cognitive support

• Interacting with the document
 • Straight into the PDF
 • Zero cognitive support
 • Data availability
451 documents
52 journals
756 terms
48 authors

Related terms:

Catalase
Protease
Insulin
Insulin-like
Catalase
Protease
catalase
protease

Summary results
Currently working on: Literature Discovery Process

- **Search**
 - Usually string-based search mechanisms
 - Little cognitive support

- **Retrieval**
 - *Simple list of DB entries*
 - *Little cognitive support*
 - How, why and where are a set of documents similar?

- **Interacting with the document**
 - Straight into the PDF
 - Zero cognitive support
Paper list Item View

Title
Author1, Author2...
- Same as...
- See also...
Abstract

Annotation Cloud click ↓ shows the text of term context

navigate between texts
Currently working on: Literature Discovery Process

- **Search**
 - Usually string-based search mechanisms
 - Little cognitive support

- **Retrieval**
 - Simple list of DB entries
 - Little cognitive support

- **Interacting with the document**
 - Straight into the PDF
 - Zero cognitive support
Future Work

• RDF
 • URI standardization following similar patterns to identifiers.org and Bio2RDF
 • Integration into Bio2RDF
 • Dataset identification and summary (void)
 • Improve data for references

• User Experience
 • Web services for data analysis
 • RDF browser
 • More visualization tools
 • Supporting and taking advantage of the structure of the document
 • Collaborative element
Future Work

- Application in Clinical Psychology, the MSRC case
 - From PDF to XML to RDF to Enriched Metadata for the PDF
 - The PDF is gently introduced in the WoD
 - Once the metadata has been enriched then
 - Rich interaction supporting: SEARCH-RETRIEVAL-INTERACTION WITH THE DOCUMENT (PDF)
Conclusions

• We provide
 • the transformation into RDF from the original PMC files
 • the annotation of the RDF
 • an API which makes that data available.
• New vocabularies as well as annotators can easily be plugged in
• Our approach is useful for both open and non-open access datasets
 • Publishers may decide what to expose via RDF and what content to make available
• Our approach is also applicable for PDF-only environments
Acknowledgments

• The MSRC consortium
• Greg Riccardi, FSU
• Oscar Corcho, UPM
• Olga Giraldo, UPM
• Bob Morris, Harvard University
• Michel Dumontier, Carleton University
• Dietrich Rebholz-Schuhmann, University of Zurich
• Diane Leiva, FSU
• US DoD Grant MOMRP Grant w81xwh-10-2-0181
• All of those who gave us feedback about the RDFization and the quality of our RDF datasets
Thanks for your attention

Contacts

- Alexander García: agarciac@gmail.com
- L. Jael García Castro: leylajael@gmail.com